A brain image database for structure/function analysis.

نویسندگان

  • S I Letovsky
  • S H Whitehead
  • C H Paik
  • G A Miller
  • J Gerber
  • E H Herskovits
  • T K Fulton
  • R N Bryan
چکیده

BACKGROUND AND PURPOSE Lesion-deficit-based structure-function analysis has traditionally been empirical and nonquantitative. Our purpose was to establish a new brain image database (BRAID) that allows the statistical correlation of brain functional measures with anatomic lesions revealed by clinical brain images. METHODS Data on 303 participants in the MR Feasibility Study of the Cardiovascular Health Study were tested for lesion/deficit correlations. Functional data were derived from a limited neurologic examination performed at the time of the MR examination. Image data included 3D lesion descriptions derived from the MR examinations by hand segmentation. MR images were normalized in-plane using local, linear Talairach normalization. A database was implemented to support spatial data structures and associated geometric and statistical operations. The database stored the segmented lesions, patient functional scores, and several anatomic atlases. Lesion-deficit association was sought by contingency testing (chi2-test) for every possible combination of each neurologic variable and each labeled atlas structure. Significant associations that confirmed accepted lesion-deficit relationships were sought. RESULTS Two-hundred thirty-five infarctlike lesions in 117 subjects were viewed collectively after mapping into Talairach cartesian coordinates. Anatomic structures most strongly correlated with neurologic deficits tended to be situated in anatomically appropriate areas. For example, infarctlike lesions associated with visual field defects were correlated with structures in contralateral occipital structures, including the optic radiations and occipital gyri. CONCLUSION Known lesion-deficit correlations can be established by a database using a standard coordinate system for representing spatial data and incorporating functional and structural data together with appropriate query mechanisms. Improvements and further applications of this methodology may provide a powerful technique for uncovering new structure-function relationships.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iranian Brain Imaging Database: A Neuropsychiatric Database of Healthy Brain

Introduction: The Iranian Brain Imaging Database (IBID) was initiated in 2017, with 5 major goals: provide researchers easy access to a neuroimaging database, provide normative quantitative measures of the brain for clinical research purposes, study the aging profile of the brain, examine the association of brain structure and function, and join the ENIGMA consortium. Many prestigious databases...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Compensation of brain shift during surgery using non-rigid registration of MR and ultrasound images

Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...

متن کامل

Diagnosis of brain tumor using PNN neural networks

Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...

متن کامل

A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI

Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 19 10  شماره 

صفحات  -

تاریخ انتشار 1998